

Spring 2013 Geometry CCPS SOL Review Items

G.1c	Directions: Shade the appropriate region on the Venn diagram.
	A group of students were polled on the type of gaming systems they most like to play. The Venn diagram shows the results of this poll.
G.1d	Shade the region that represents students that like to play Xbox 360 and PlayStation, but not Wii.
A. If the road conditions are icy, then they are hazardous. The road conditions are hazardous. Therefore, the road is icy.	
B. If two angles are vertical angles, then they are congruent. If two angles are congruent, then they have the same measure. If two angles are vertical angles, then they have the same measure. C. If today is Friday, then tomorrow is Saturday. If tomorrow is Saturday, then I don't have to go to school. If tomorrow is Saturday, then I will go to the park.	
D. All athletes must have a physical. Ralph had a physical. Ralph is an athlete.	

G. 2	The student will use the relationships between angles formed by two lines cut by a transversal to a) determine whether two lines are parallel; b) verify the parallelism, using algebraic and coordinate methods as well as deductive proofs; and c) solve real-world problems involving angles formed when parallel lines are cut by a transversal.
G.2a	What measure of $\angle \mathrm{ABC}$ will prove that $\overleftrightarrow{B C}$ is parallel to $\overleftrightarrow{D E}$?

Spring 2013 Geometry CCPS SOL Review Items

G.2b	Directions: Write the reasons for the proof in the appropriate box.	
	Given: Lines r and s with transversal t $\angle 3 \cong \angle 1$ Prove: $r \\| s$	
	Statements	
	1. Lines r and s with transversal t 1. Given $\angle 3 \cong \angle 1$	
	2. $\angle 1 \cong \angle 2$	
	3. $\angle 3 \cong \angle 2$	
	$\text { 4. } r \\| s$ 4.	
	Fill in the reasons for the proof using the following theorems, definitions, postulates or properties of algebra.	
	If two lines are intersected by a transversal so that each pair of alternate interior angles is congruent, then the lines are parallel.	
	Transitive Property	
	Definition of congruent angles	
	Vertical angles are congruent	
	Reflexive Property	
	If two lines are intersected by a transversal so that each pair of corresponding angles is congruent, then the lines are parallel.	
G.2c	Directions: Write your answer in the box.	
	The illustration above pictures a bridge. What must be m $\angle A B C$ to insure the top of the bridge is parallel to the bottom of the bridge?	

Spring 2013 Geometry CCPS SOL Review Items

Spring 2013 Geometry CCPS SOL Review Items

G.3a	 Quadrilateral TDHS is shown on the graph. What is the slope of diagonal SD? A. $\frac{2}{11}$ B. $-\frac{11}{2}$ C. $-\frac{2}{11}$ D. $\frac{11}{2}$
G.3b	Directions: Write your answer in the box.
	Line a has the equation $y=7 x-12$. Line b has the equation $2 x+14 y=28$. Determine whether lines a and b are parallel, perpendicular or neither. \square
G.3b	Directions: Place a point on the grid to plot the point you want to select.

Spring 2013 Geometry CCPS SOL Review Items

Spring 2013 Geometry CCPS SOL Review Items
G.3d Which of the following shows the Δ translated 3 units up and 4 units left?

A.

C.

B.

D.

Spring 2013 Geometry CCPS SOL Review Items

G.3d	What will be the coordinate of the center of circle O if it is rotated 270° counterclockwise about the origin? A. $(-4,3)$ B. $(-3,-4)$ C. $(4,-3)$ D. $(3,4)$
G.3d	A. Reduction, scale factor $=2$ B. Reduction, scale factor $=\frac{1}{2}$ C. Enlargement, scale factor $=2$ D. Enlargement, scale factor $=\frac{1}{2}$
G. 4	The student will construct and justify the constructions of a) a line segment congruent to a given line segment; b) the perpendicular bisector of a line segment; c) a perpendicular to a given line from a point not on the line; d) a perpendicular to a given line at a given point on the line; e) the bisector of a given angle, f) an angle congruent to a given angle; and g) a line parallel to a given line through a point not on the given line.

G.4a	Which city is the same distance from Richmond as is Glen Allen from Richmond? Chester A. Ashland B. Bon Air C. Chester D. Dinwiddie
G.4b	Pictured below is a Snickers bar that you must divide evenly with your best friend. Through which segment will you make your cut with the knife? $\cdot \mathrm{C} \cdot \mathrm{~B}, \mathrm{~A}$, Y : Z A. $\overline{\mathrm{AW}}$ B. $\overline{\mathrm{BX}}$ C. $\overline{\mathrm{CY}}$ D. $\overline{\mathrm{DZ}}$

G.4c	The baseball coach is laying out the infield and must locate third base using second base and the third base line as references. Knowing that second base and third base are on a perpendicular line, which point locates third base correctly?
G.4d	Shamal has decided to cut the board into two pieces. To insure a straight cut Shamal wants to construct a perpendicular line to follow as he cuts. Which mark(s) would be the first step in Shamal's construction? A. D B. A and B C. E D. C and D

Spring 2013 Geometry CCPS SOL Review Items

G.4e	One slice of pumpkin pie remains for you and your friend. What construction would you use to insure that each of you gets an equal slice of the pie?
G.4f	
A. Construct an angle congruent to a given angle B. Construct a segment congruent to a given segment. C. Construct the perpendicular bisector of a segment Which segment will make the next line painted parallel to the two painted lines?	
A. AB bisector of an angle.	
B. AC	
C. AD	

G.4g	In order to keep the tractor on a parallel line to the combine, which point must lie on the line with X ?
G. 5	The student, given information concerning the lengths of sides and/or measures of angles in triangles, will a) order the sides by length, given the angle measures; b) order the angles by degree measure, given the side lengths; c) determine whether a triangle exists; and d) determine the range in which the length of the third side must lie. These concepts will be considered in the context of real-world situations.
G.5a	3 cows are standing in a field. Which answer choice states the distance between each cow from least to greatest? A. OW, CO, CW B. $\mathrm{OW}, \mathrm{CW}, \mathrm{CO}$ C. CO, CW, OW D. $\mathrm{CW}, \mathrm{CO}, \mathrm{OW}$

Spring 2013 Geometry CCPS SOL Review Items

G.5b	Pocahontas State Park, Ironbridge Park and Point of Rocks Park form a triangle. Given the information in the diagram, which of the following statements is true? A. The smallest angle is at Ironbridge Park B. The largest angle is at Pocahontas State Park C. The smallest angle is at Pocahontas State Park D. The largest angle is at Point of Rocks Park
G.5c	Directions: Circle all possible lengths that form a triangle. You must choose all answers.
	Circle all possible side lengths that could form a triangle.
G.5d	Directions: Circle all possible distances. You must choose all correct answers.
	Bus C is 8 miles from bus B. Bus C is 23 miles from bus A. Circle all possible distances from bus B to bus A.

Spring 2013 Geometry CCPS SOL Review Items

Spring 2013 Geometry CCPS SOL Review Items

Spring 2013 Geometry CCPS SOL Review Items

G. 7	Directions: Write the reasons for the proof in the appropriate box.	
	Given: $A B\|\mid D E$ Prove: $\triangle B C A \sim \triangle D C E$Statements Reasons 1. $\overline{\mathrm{AB}} \\| \overline{\mathrm{DE}}$ $1 \square$ 2. $\angle \mathrm{ABC} \cong \angle \mathrm{EDC}$ 2. 3. $\angle \mathrm{ACB} \cong \angle \mathrm{ECD}$ 3. 4. $\triangle \mathrm{BCA} \cong \triangle \mathrm{DCE}$ 4.	
	If two parallel lines are intersected by a transversal, then each pair of corresponding angles is congruent. Side-Side-Side(SSS) then	
	Given \quad All right angles are congruent.	
	Side-Angle-Side(SAS) If two parallel lines are intersected by a transversal, then each pair of alternate interior angles is congruent.	
	Angle-Angle(AA) \quad Vertical angles are congruent.	
G. 7	Directions: Write the similarity statement and justification in the box.	
	Are the triangles similar? If so, state the similarity statement and the postulate or theorem used that justifies your answer.	

Spring 2013 Geometry CCPS SOL Review Items

G. 8	The student will solve real-world problems involving right triangles by using the Pythagorean Theorem and its converse, properties of special right triangles, and right triangle trigonometry.
G. 8	J oe Bean regularly takes a short-cut across Mr. Wilson's lawn instead of walking on the sidewalk on his way home from school. How much distance is saved by Joe cutting across the lawn? A. 5 feet B. 10 feet C. 15 feet D. 25 feet
G. 8	Directions: Write your answer in the box.
	To the nearest tenth, find the length of the tower on top of the building (x). \square
G. 9	The student will verify characteristics of quadrilaterals and use properties of quadrilaterals to solve real-world problems.

Spring 2013 Geometry CCPS SOL Review Items

G. 9	Directions: Write your answer in the box.
	Find the $m \angle B A C$. \square
G. 9	In the rhombus, $\mathrm{AC}=24$ and $\mathrm{BD}=32$. Find the perimeter of the rhombus. A. 20 B. 80 C. 96 C. 128
G. 10	The student will solve real-world problems involving angles of polygons.
G. 10	Find $m<7$. Both polygons are regular polygons. A. 144 B. 135 C. 90 D. 81

G. 10	Directions: Write your answer in the box.
	The diagram below shows part of a honeycomb in a beehive. Find $\mathrm{m}<7$. \square
G. 11	The student will use angles, arcs, chords, tangents, and secants to a) investigate, verify, and apply properties of circles; b) solve real-world problems involving properties of circles; and c) find arc lengths and areas of sectors in circles.
G.11a	$U D$ is a tangent ray. If $U D=15$ and $U F=9$, find $W F$. A. 6 B. 16 C. 25 D. 90
G.11b	A new brand of clothing wants to use the logo below on their clothes. What must be $m \angle P D Q$ if $m \angle P O Q=66^{\circ}$? A. 132° B. 66° C. 33° D. 16.5°

G.11c	The light from the lighthouse makes a 12° angle. If the light can be seen for 3 miles, what is the area covered by the light? A. $\frac{3}{10} \pi \mathrm{mi}^{2}$ B. $\frac{10}{3} \pi \mathrm{mi}^{2}$ C. $9 \pi \mathrm{mi}^{2}$ D. $108 \pi \mathrm{mi}^{2}$
G. 12	The student, given the coordinates of the center of a circle and a point on the circle, will write the equation of the circle.
G. 12	Carolyn is going to make a crop circle in a cornfield to be viewed from a hot air balloon. She has mapped out a coordinate plane in the cornfield and designated $(-6,2)$ as the center of her circle and $(3,-38)$ as one point on her circle. What will be the equation of Carolyn's crop circle? A. $(x-3)^{2}+(y+38)^{2}=1681$ B. $(x+6)^{2}+(y-2)^{2}=1681$ C. $(x-6)^{2}+(y+2)^{2}=1681$ D. $(x+6)^{2}+(y-2)^{2}=41$
G. 12	Directions: Circle all possible points on the circle. You must choose all answers.
	A circle has a center with coordinate $(-2,-4)$ and the point $(4,-4)$ lies on the circle. Circle all points that lie on the circle.
	$\begin{array}{lll} (-2,2) & (-8,-4) & (0,0) \\ (1,-1) & (-2,-10) & (4,0) \end{array}$

Spring 2013 Geometry CCPS SOL Review Items

G.13	The student will use formulas for surface area and volume of three-dimensional objects to solve real-world problems.
G.13	Directions: Write your answer in the box.

Spring 2013 Geometry CCPS SOL Review Items

G.14b	If the radius of the cylinder is tripled, what will be the resulting effect on the volume of the cylinder? A. 3 times as much B. 6 times as much C. 8 times as much D. 9 times as much
G.14c	Directions: Circle the statements that are true. You must choose all correct answers.
	For the volume of the rectangular solid to double, which of the following must happen? Circle all of the following statements that are true.
G.14d	Directions: Write your answer in the box.
	Shown below are a baseball, whose radius is 1.5 inches and a women's basketball, whose radius is 4.5 inches. What is the ratio of the surface area of the baseball to the surface area of the basketball?

Spring 2013 Geometry CCPS SOL Review Items

