Algebra II

SOL Folder

Expressions & Operations

Expressions & Operations

AII.1 The student, given rational, radical, or polynomial expressions, will a) add, subtract, multiply, divide, and simplify rational algebraic expressions;

Notes and Formulas:

To add or subtract: Must have a common denominator

To multiply: Factor numerator, factor denominator, cancel common factors To divide: Flip the fraction after the division sign and use multiplication rules

To simplify: factor numerator, factor denominator, cancel common factors - NO CHOPPING!!

Complex Fractions: Simplify numerator, simplify denominator, then divide

Examples:

1. Which is equivalent to $\frac{x^2-4}{x^2-4x+4}$?

Which is equivalent to
$$\frac{x^2-4x+4}{x^2-4x+4}$$
?

$$\mathbf{A} \quad \frac{1}{x+1}$$

$$\mathbf{B} \quad \frac{x+2}{x-2}$$

$$\mathbf{c} = \frac{1}{4x}$$

$$\mathbf{D} \quad \frac{1}{x+4}$$

2. Which is equivalent to

$$\frac{6a+12}{a} \bullet \frac{a^3}{a+2} = ?$$

$$\mathbf{G} \ \frac{6}{a^2}$$

H
$$\frac{6(a+2)}{a}$$

$$\mathbf{J} \quad \frac{6a^2 + 24a + 24}{a^4}$$

3. Which is equivalent to
$$\frac{3x}{7} + \frac{5y}{14x}$$
?

$$\mathbf{A} \quad \frac{8y}{21}$$

B
$$\frac{x^2}{14}$$

c
$$\frac{6x^2 + 5y}{14x}$$

D
$$\frac{3x^2 + 5y}{14x}$$

4. Which is equivalent to
$$\frac{\frac{x}{x+7}}{\frac{x-9}{x+7}}$$
?

G
$$\frac{x^2 - 9x}{(x+7)^2}$$

$$\frac{x}{x-9}$$

$$J = \frac{-1}{9}$$

5. Which is equivalent to
$$\frac{\frac{1}{x} - \frac{4}{y}}{\frac{2}{x} + \frac{5}{y}}$$
?

6. Which is equivalent to
$$\frac{(a+b)^3}{18} \bullet \frac{2}{(a+b)^2}$$
?

$$\mathbf{A} \quad \frac{x - 4y}{5x + 2y}$$

$$\mathbf{F} \quad \frac{a+b}{9}$$

$$\mathbf{B} \quad \frac{y - 4x}{2y + 5x}$$

G
$$\frac{(a+b)^2}{9}$$

c
$$\frac{x^2y^2}{(y-4x)(2y+5x)}$$

H
$$\frac{(a+b)^5}{36}$$

D
$$2y^2 - 3xy - 20x^2$$

All.1 The student, given rational, radical, or polynomial expressions, will
b) add, subtract, multiply, divide, and simplify radical expressions containing rational
numbers and variables, and expressions containing rational exponents;
c) write radical expressions as expressions containing rational exponents and vice versa

Notes and Formulas:

$$\sqrt[b]{x^a} = x^{\frac{a}{b}}$$
 Remember: "Denominator in Dip"

To add or subtract radicals: Radicands must be the same. You may only add like radicals.

Always simplify your radical completely.

Pay attention to your root value. Everything is not a square root.

Examples:

1. Which expression is equivalent to
$$\sqrt[3]{a^2}$$
 ?

2. Which is equivalent to
$$\sqrt[3]{8x^6}$$
 ?

A
$$a^{\frac{3}{2}}$$

B
$$a^{\frac{2}{3}}$$

$$\mathbf{C} = \frac{1}{6}\mathbf{F}$$

$$\mathbf{H} \quad 2x^2$$

$$\mathbf{C} \quad a^6 \, \mathbf{D}$$

$$\mathbf{J} \quad 2x^3$$

 \mathbf{D} a°

- 3. Which is equivalent to $16^{\frac{3}{4}}$?
- **A** 4
- **B** 8
- **C** 12
- **D** 32
- 4. Which is equivalent to $a^{\frac{1}{2}}b^{\frac{3}{4}}$?
- $\mathbf{F} ab^3$
- $\mathbf{G} \quad \sqrt{ab^3}$
- H $\sqrt[3]{a^2b^4}$
- J $\sqrt[4]{a^2b^3}$
- 5. Which is equivalent to $2\sqrt{12} + 3\sqrt{3}$?
- **A** $16\frac{1}{2}$
- **B** $5\sqrt{15}$
- **c** $7\sqrt{3}$
- **D** $7\sqrt{6}$

6. What is the simplest form of

$$\sqrt{72x^3} - 5x\sqrt{2x} ?$$

- $\mathbf{F} \quad x\sqrt{2x}$
- $\sqrt{2x}$
- H $2x\sqrt{x}$
- J $x^2\sqrt{2x}$
- 7. What is the value of $\left(\frac{5^5}{2^5}\right)^{-1/5}$?
- **A** 5/2
- **B** 25/4
- C 2/5
- **D** 4/25
- 8. Which is equivalent to the expression

$$\sqrt[3]{16} + 3\sqrt[3]{54} - 2\sqrt[3]{81}$$
 ?

- $\mathbf{F} \ 11\sqrt[3]{2} 6\sqrt[3]{3}$
- **G** $11\sqrt[3]{2} 2\sqrt[3]{3}$
- $+2\sqrt[3]{2}$
- J $5\sqrt[3]{2} 6\sqrt[3]{3}$

All.1 The student, given rational, radical, or polynomial expressions, will d) factor polynomials completely

Notes and Formulas

Always look for a greatest common factor first xy + xw = x(y+w)

Look for patterns: $a^2 - b^2 = (a + b)(a - b)$

$$a^2 + 2ab + b^2 = (a+b)^2$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ square-multiply-square-opposite-plus ***make sure you have that opposite sign in the second factor

You can multiply or "foil" your choices to work backwards, if you want to work backwards.

Examples:

1. Which is a factored form of $9x^2$ -25?

A
$$(3x-5)(3x+5)$$

B
$$(3x-5)^2$$

c
$$(3x+5)^2$$

D
$$(9x-25)^2$$

2. Which is a factor of 16x² - 1?

$$\mathbf{F}$$
 $(x-1)$

G
$$(4x+1)$$

H
$$(8x-1)$$

3. Which is a factor of $x^2 - 2x - 15$?

A
$$(x-3)$$

B
$$(x-15)$$

c
$$(x+3)$$

D
$$(x+5)$$

4. Which is a factor of 6a² +5ab-6b²?

$$F$$
 (2a + 3b)

$$H$$
 (3a + 2b)

5. Which is a factored form of $8x^3 + 1$?

A
$$(2x-1)(4x^2-2x+1)$$

B
$$(2x-1)(4x^2+2x-1)$$

c
$$(2x+1)(4x^2-2x+1)$$

D
$$(2x+1)(4x^2+2x-1)$$

6. Which is a factored form of $1-y^3$?

$$\mathbf{F} (1-y)(1-y-y^2)$$

G
$$(1-y)(1+y+y^2)$$

H
$$(1+y)(1-y-y^2)$$

J
$$(1+y)(1+y+y^2)$$

- 7. Which represents the complete factorization of $4x^2 14x 8$?
- **A** 2(2x-1)(x+4)
- **B** 2(2x+4)(x-1)
- **C** 2(2x+1)(x-4)
- **D** 2(2x-1)(x-4)

8. Given the area of a rectangle is $2x^2 + 5x - 12$.

Which of the following could represent the length of one side of the rectangle?

- F 2x + 3
- G 2x 3
- Hx-4
- J x + 12
- All.3 The student will perform operations on complex numbers, express the results in simplest form using patterns of the powers of *i*, and identify field properties that are valid for the complex numbers.

Notes and Formulas:

Use your *i* button on your calculator.

Remember to include your parentheses. If $\frac{2+i}{3+i}$, you must put in $(2+i)\div(3+i)$

Remember: $i^2 = -1$ Always change your t^2 to -1 if working out by hand.

Examples:

1. Which expression is equivalent to

$$(6+2i)-(4+3i)$$
?

- A 2-i
- $\mathbf{B} \quad 2+i$
- **C** 2 + 5i
- **D** 10-i

- 2. Which is equivalent to (4-2i)(5+3i)?
- F 26
- **G** 12
- H 14 + 2i
- J 26 + 2i

- 3. Which is equivalent to $(4-3i)^2$?
- **A** 25
- **B** 25-2i
- **C** 7
- **D** 7 24i
- 4. Which is equivalent to (3+2i)(2+5i)?
- F 4 + 19i
- **G** 16+19i
- H 6 + 29i
- J 6-10*i*
- 5. Which is equivalent to $\frac{5+i}{1+3i}$?
- $\mathbf{A} \quad \frac{4-8i}{5}$
- **B** $\frac{4-7i}{5}$
- c $\frac{1-7i}{5}$
- **D** $\frac{-1-7i}{4}$

- 6. Which is equivalent to $\sqrt{3} \cdot \sqrt{-3}$?
- F 3*i*
- **G** -3i
- **H** 9
- J 9i
- 7. What number does i^{24} equal?
- \mathbf{A} i
- B -1
- C i
- **D** 1
- 8. TEQ Write the answer to the expression $\left(4+2i\right)(4-2i)$ in the box below.

Equations &

Inequalities

Equations & Inequalities

All/T.4 The student will solve, algebraically and graphically,

a) absolute value equations and inequalities

Graphing calculators will be used for solving and for confirming the algebraic solutions.

Notes and Formulas:

An absolute value equation or inequality makes TWO statements.

Shading of Graphs: $|absolutevalue| \le number$ "AND" sentence (Less than or equal to)

Look for graph shaded between 2 numbers and closed circles

| absolutevalue | < number "AND" sentence (Less than only)

Look for graph shaded between 2 numbers and open circles $|absolutevalue| \ge number$ "OR" sentence (Greater than or equal to)

Look for graph shaded to the left and to the right, closed circles

| absolutevalue | > number "OR" sentence (Greater than only)

Look for graph shaded to the left and to the right, open circles

Practice Problems:

___1. Which of the following represents

the solution to |x| = 7?

A
$$x=7$$

$$\mathbf{B} \quad x = 0$$

C
$$x = -7$$

D
$$x = -7 \text{ or } x = 7$$

2.

Which inequality describes the

solution set graphed above?

$$F |x-3| > 1$$

G
$$|2x-5| < 3$$

$$H |4x-9| \ge 2$$

J
$$|5x - 13| \le 5$$

___3. What is the solution to |2x-3| -1 < 3?

B
$$\frac{-7}{2} < x < \frac{7}{2}$$

C
$$x > \frac{-1}{2}$$
 or $x < \frac{7}{2}$

D
$$x = \frac{-1}{2}$$
 or $x = \frac{7}{2}$

F

4 Which best represents the graph of

$$2|2x-1| > 10$$
?

Which inequality describes the

solution set graphed above?

A
$$|3x-4| \ge 8$$

____5

B
$$|3x-4| < 8$$

c
$$|2x-3| > 5$$

$$\mathbf{D} \cdot |2x - 3| \le 5$$

__6. What is the solution set for

$$|2x+5|=7$$
?

7. -9-8-7-6-5-4-3-2-1 0 1 2 3 4 5

Which of the following inequalities

best represents the graph above?

A
$$|x-1| < 3$$

B
$$|x-7| < 4$$

c
$$|x+3| < 7$$

D
$$|x+3| < 4$$

AII/T.4 The student will solve, algebraically and graphically,

- b) quadratic equations over the set of complex numbers
- Graphing calculators will be used for solving and for confirming the algebraic solutions.

Notes and Formulas:

Ways to solve a quadratic eqt.: Put equation in $ax^2 + bx + c = 0$ form

- 1. Factor, set each factor equal to zero, find solutions
- 2. Use quadratic formula: $\frac{-b \pm \sqrt{b^2 4ac}}{}$
- 3. Square Root both sides if a squared term is isolated on one side
- 4. Use your calculator: Sketch in y=

Zoom 6

Look for zeros(x-intercepts)

5. Work backwards - "Plug it in !!!!" Substitute given answer choices into your calc and see what works

Know terminology: Solutions, zeros, roots, x-intercepts all mean the same thing

 $\sqrt{negative}$ Always "pull the i out" first before you simplify your radical

Practice Problems:

____1. What is the solution set for

$$x^2 + 6x - 16 = 0$$
?

- **A** {0, 4}
- **B** {-8, 2}
- **C** {-3, 5}
- **D** {-2, 8}

2. Which is the solution set for

$$x^2 - 4x = 8$$
?

- $F \{2 \pm 2i\}$
- **G** $\{2 \pm 2\sqrt{3}\}$
- **H** {4, 2}
- **H** {-4, 2}

___3. Which is the solution set for

$$2x^2 + 2x + 1 = 0$$
?

- $\mathbf{A} \quad \left\{ \pm \frac{1}{2} \right\}$
- **B** $\left\{ \frac{-1}{2} \pm \frac{1}{2}i \right\}$
- $\mathbf{c} \quad \left\{ \frac{-1}{2} \pm i \right\}$
- **D** $\{-1 \pm i\}$

_4. What are the solutions to

$$(v+3)^2 - 81 = 0$$
?

- **F** y = -12 or y = -6
- **G** y = -12 or y = 6
- **H** y = 12 or y = -6
- **J** y = 12 or y = 6

___5. What are the solutions to

$$x^2 - 3x - 4 = 0$$
?

A
$$x = 1 \text{ or } x = -4$$

B
$$x = -1 \text{ or } x = 4$$

$$\mathbf{c} \quad x = \frac{3 \pm i\sqrt{7}}{2}$$

$$\mathbf{D} \quad x = \frac{3 \pm \sqrt{7}}{2}$$

___6. What are the solutions to

$$4x - 16 = -2x^2$$
?

F
$$x = 4i$$
 or $x = -2$

G
$$x = -4 \text{ or } x = 2$$

H
$$x = 4$$
 or $x = 2i$

J
$$x = 4 \text{ or } x = 2$$

_____7 Which graph represents a quadratic

equation with no real solutions?

All/T.4 The student will solve, algebraically and graphically, c) equations containing rational algebraic expressions Graphing calculators will be used for solving and for confirming the algebraic solutions.

Notes	and	Forr	nulas:

To solve a rational equation: Eliminate your denominators

Cross-multiply if possible

Multiply both sides of equation by your Least Common Denominator

Plug it in! (See what answer satisfies your equation)

Practice Problems:

___1. What is the solution to
$$\frac{x}{2x+1} = \frac{4}{3}$$
?

A
$$x = \frac{-1}{5}$$

B
$$x = 5$$

c
$$x = \frac{-4}{5}$$

D
$$x = \frac{-5}{4}$$

 $\underline{\hspace{0.5cm}}$ 2. What value of q is the solution to the

equation
$$\frac{7q-9}{6} = \frac{6q+2}{4}$$
?

$$q = \frac{-11}{8}$$

G
$$q = -6$$

H
$$q = \frac{31}{9}$$

J
$$q = 48$$

$$\frac{3x^2 - 2}{x} = \frac{6x - 2}{x}$$
?

$$c \sqrt{2}$$

 $\underline{\hspace{1cm}}$ 4. What value of y is the solution to

the equation
$$\frac{4y-30}{3} + \frac{6y+8}{2} = 9$$
?

F
$$y = \frac{28}{5}$$

G
$$y = \frac{45}{13}$$

H
$$y = \frac{8}{5}$$

J
$$y = \frac{23}{24}$$

5. TEQ Solve the following equation for x:

$$x + \frac{25}{x} = 10$$

Place your answer in the box.

All/T.4 The student will solve, algebraically and graphically,

d) equations containing radical expressions

Graphing calculators will be used for solving and for confirming the algebraic solutions.

Notes and Formulas:

To solve radical equation: If a squared equation, square root both sides

If a cubed equation, cube root both sides

Plug it in !!!! (see what answer satisfies your equation)

Practice Problems:

___1. 11 What is the solution set for

$$\sqrt{x-4} = 5?$$

A {21}

B {25}

C {29}

D {33}

____2. What is the solution set for

$$\frac{1}{4}\sqrt{9+x} = 1?$$

F {-7, 7}

G {-5, 5}

H {7}

J {5}

___3. What is the solution set for

$$\sqrt{3y} + 4 = 5$$
?

A {3}

B {1}

c $\left\{\frac{1}{3}\right\}$

 $\mathbf{D} \quad \left\{ \frac{1}{9} \right\}$

___4. What is the solution to $\sqrt{x+16} = 3\sqrt{x}$?

F $x = \frac{1}{2}$

G $x = \frac{8}{5}$

 $\mathbf{H} \quad x = 2$

CMS

May, 2012

___5. What is a solution to
$$\sqrt[3]{x-3}+3=5$$
?

- $\mathbf{A} \quad \mathbf{x} = 2$
- $\mathbf{B} \quad \mathbf{x} = 3$
- $\mathbf{C} \mathbf{x} = 7$
- **D** x = 11

- 6. The length, s, (in feet) of the skid mark left by an automobile traveling at r miles per hour can be approximated by the relation $r = 2\sqrt{5s}$. If a car is going 80 miles per hour when the brakes are applied, about how many feet long would the skid mark be?
- **F** 320 ft
- **G** 410 ft
- **H** 640 ft
- 1,280 ft

AII/T.5 The student will solve nonlinear systems of equations, including linear-quadratic and quadratic-quadratic, algebraically and graphically. Graphing calculators will be used as a tool to visualize graphs and predict the number of solutions.

Notes and Formulas:

Remember your solution is your point or points of intersection.

If given a graph, look at your choices and approximate where the solutions are (Read your graph)

If given equations: 1. Plug it in !! Plug in choices to see which point satisfies both equations. You are working backwards and checking

2. Use your calculator . Make sure your eqts. are in y= form

Put equation one in y₁ Put second equation in y₂

Use Zoom 6, then adjust your window as needed Then 2nd Calc #5, put blinker on point, Enter, Enter

Be sure to check your answer(s).

***If your curves do not intersect at all – There is no solution to your system!

Practice Problems:

____1. What is the solution set to the

following system of equations?

$$\begin{cases} y + 2x = 2 \\ x^2 + 3y = 22 \end{cases}$$

___2.

This is a portion of the graph of a system of equations. Which is *most*

likely the solution set for the system?

$$\begin{cases} y = x^2 - 2v - 1 \\ y = -x^2 + 4v - 1 \end{cases}$$

Which set of ordered pairs is the solution to the system of equations

shown?

___4.

This is a portion of the graph of a system of equations. Which is most likely the solution set for the system?

$$\begin{cases} 2y = x^2 - 6x - 9 \\ 2y = x^2 + 2x + 1 \end{cases}$$

What is the solution set for this system of equations?

D
$$\{(2, \frac{1}{2})\}$$